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George Boole (1815-1864)

● Largely self-taught son of a shoemaker
● Professor of Mathematics, Queen’s College, Cork, Ireland
● Founder of the system of binary algebra called

Boolean algebra or Boolean logic
– Elementary algebra describes numerical operations;

Boolean algebra describes logical operations
– Relevant works:

● The Mathematical Analysis of Logic (1847)
● An Investigation of the Laws of Thought (1854)



  

Boolean Algebra

● Fundamental in the development of digital electronics
– Operations provided for in all modern programming languages

● Used in set theory and statistics



  

Negation: NOT

● Example English statement:
– It is not Monday

● Symbols:

– Logic:  ¬    Programming:  ~        Set notation:  ′
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Conjunction: AND
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– It is Monday and it is raining

● Switch equivalent
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Conjunction: AND
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Disjunction: OR

● Example English statement
– You may be injured if you are hit or you fall

● Switch equivalent

● Symbols:

– Logic:      ∨ Programming:  |        Set notation:  ∪
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Disjunction: OR
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Exclusive Disjunction: XOR

● Example English statement
– Pick either heads or tails
– I will watch the movie on Monday or Tuesday

● Symbols:

– Logic:      ⊻ Programming:  ^        Set notation: none
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Exclusive Disjunction: XOR

● Example English statement
– Pick either heads or tails
– I will watch the movie on Monday or Tuesday

● Symbols:

– Logic:      ⊻ Programming:  ^        Set notation: none

a b a  b∨
0 0 0
0 1 1
1 0 1
1 1 0

Truth Table for XOR



  

Inverted Logic Gates 

AND

XNORXOR

OR NOR

NAND

NOT
a b a  b∧ ¬(a  b)∧
0 0
0 1
1 0
1 1

Truth Table for AND and NAND



  

Inverted Logic Gates 

AND

XNORXOR

OR NOR

NAND

NOT
a b a  b∧ ¬(a  b)∧
0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

Truth Table for AND and NAND



  

Implication and Equivalence

a b A  b⇒
0 0 1
0 1 1
1 0 0
1 1 1

Truth Table for IMPLY
a b A ⇔ b
0 0 1
0 1 0
1 0 0
1 1 1

Truth Table for EQUIV
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Properties of Elementary Algebra

● Associative Property

● Commutative Property

● Distributive Property

a(b+c) = (a⋅b)+(a⋅c)

(a+b) + c = a + (b+c)

a+b = b+a a⋅b = b⋅a

(a⋅b)⋅c = a⋅(b⋅c)



  

Associative Property

A B C A B∧ B C∧ A (B C)∧ ∧
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

(A∧B) C∧

(a⋅b)⋅c = a⋅(b⋅c)



  

Associative Property

A B C A B∧ B C∧ A (B C)∧ ∧
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 1 0
1 0 0 0 0 0 0
1 0 1 0 0 0 0
1 1 0 1 0 0 0
1 1 1 1 1 1 1

(A∧B) C∧

( A∧B)∧C = A∧(B∧C )

(a⋅b)⋅c = a⋅(b⋅c)



  

Associative Property

A B C A B∨ B C∨ A (B C)∨ ∨
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

(A∨B) C∨

(a+b) + c = a + (b+c)



  

Associative Property

A B C A B∨ B C∨ A (B C)∨ ∨
0 0 0 0 0 0 0
0 0 1 0 1 1 1
0 1 0 1 1 1 1
0 1 1 1 1 1 1
1 0 0 1 1 0 1
1 0 1 1 1 1 1
1 1 0 1 1 1 1
1 1 1 1 1 1 1

(A∨B) C∨

( A∨B)∨C = A∨(B∨C )

(a+b) + c = a + (b+c)



  

Distributive Rule
A B C B C∨ A (B C)∧ ∨ A C∧
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

A∧B (A∧B) (A C)∨ ∧

A∧(B∨C) = ( A∧B)∨( A∧C)

a(b+c) = (a⋅b)+(a⋅c)



  

Distributive Rule
A B C B C∨ A (B C)∧ ∨ A C∧
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1

A∧B (A∧B) (A C)∨ ∧

A∧(B∨C ) = ( A∧B)∨( A∧C )

a(b+c) = (a⋅b)+(a⋅c)
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De Morgan’s Laws

A B ¬A ¬B ¬A ¬B∧ ¬(¬A ¬B)∧ A B∨

0 0 1 1 1 0 0
0 1 1 0 0 1 1
1 0 0 1 0 1 1
1 1 0 0 0 1 1

¬(¬A∧¬B) = A∨B



  

De Morgan’s Laws

A∧B = A∨B

¬(¬A∧¬B) = A∨Bc

A B ¬A ¬B ¬A ¬B∧ ¬(¬A ¬B)∧ A B∨

0 0 1 1 1 0 0
0 1 1 0 0 1 1
1 0 0 1 0 1 1
1 1 0 0 0 1 1



  

De Morgan’s Laws

A B ¬A ¬B ¬(¬A ¬B)∨¬A∨¬B A∧B



  

De Morgan’s Laws

A B ¬A ¬B ¬(¬A ¬B)∨

0 0 1 1 1 0 0
0 1 1 0 1 0 0
1 0 0 1 1 0 0
1 1 0 0 0 1 1

¬A∨¬B A∧B

¬(¬A∨¬B) = A∧B

A∨B = A∧B



  

De Morgan’s Laws

● It also works with sets

A'

B'

A' ∩ B'
( A' ∩ B')'
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De Morgan’s Laws

● It also works with sets

A'

B'

A' ∪ B'
( A' ∪ B')' = A ∩ B



  

Symbols

Java, C
Operation Sets Logic Alternate Bitwise Logical

negation NOT ' ¬ ~ !
conjunction AND ∩ ∧ · & &&

OR ∪ ∨ + | ||

XOR ⊻ ⊕ ^

inclusive 
disjunction

exclusive 
disjunction
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