Introduction to Computer Science

Boolean Logic

Introduction

Lecture Contents

- George Boole and Boolean Algebra
- Logic Gates
 - NOT, AND, OR, XOR
 - NAND, NOR, XNOR
- Algebraic Properties
 - Associative, Commutative, Distributive
- De Morgan's Law
- Bitwise Operators

George Boole (1815-1864)

- Largely self-taught son of a shoemaker
- Professor of Mathematics, Queen's College, Cork, Ireland
- Founder of the system of binary algebra called Boolean algebra or Boolean logic
 - Elementary algebra describes numerical operations;
 Boolean algebra describes logical operations
 - Relevant works:
 - The Mathematical Analysis of Logic (1847)
 - An Investigation of the Laws of Thought (1854)

Boolean Algebra

- Fundamental in the development of digital electronics
 - Operations provided for in all modern programming languages
- Used in set theory and statistics

- Example English statement:
 - It is **not** Monday

• Symbols:

Logic: ¬ Programming: **^**

- Example English statement:
 - It is **not** Monday

Logic: ¬ Programming: **^**

- Example English statement:
 - It is **not** Monday

Logic: ¬ Programming: **^**

- Example English statement:
 - It is **not** Monday

Logic: ¬ Programming: **^**

- Example English statement:
 - It is **not** Monday

Logic: ¬ Programming: **^**

- Example English statement:
 - It is Monday *and* it is raining

• Switch equivalent

• Symbols:

Logic: **A** Programming: **&**

- Example English statement:
 - It is Monday *and* it is raining

• Switch equivalent

• Symbols:

Logic: A Programming: &

- Example English statement:
 - It is Monday *and* it is raining

• Switch equivalent

• Symbols:

⁻ Logic: Λ Programming: &

- Example English statement:
 - It is Monday *and* it is raining

• Switch equivalent

- Symbols:
 - Logic: Λ Programming: &

Truth Table for AND

a	b	a ∧ b
0	0	
0	1	
1	0	
1	1	

- Example English statement:
 - It is Monday *and* it is raining

• Switch equivalent

- Symbols:
 - Logic: **A** Programming: **&**

Truth Table for AND

b

 $\left(\right)$

1

Ω

1

a

()

 \bigcap

1

a∧b

()

()

Ω

1

- Example English statement
 - You may be injured if you are hit or you fall

• Switch equivalent

- Symbols:
 - Logic: V Programming: |

- Example English statement
 - You may be injured if you are hit or you fall

• Switch equivalent

- Symbols:
 - Logic: V Programming: |

- Example English statement
 - You may be injured if you are hit or you fall

• Switch equivalent

- Symbols:
 - Logic: V Programming: |

- Example English statement
 - You may be injured if you are hit or you fall

• Switch equivalent

а	b	a ∨ b
0	0	
0	1	
1	0	
1	1	

- Symbols:
 - Logic: V Programming: |

- Example English statement
 - You may be injured if you are hit or you fall

• Switch equivalent

- Symbols:
 - Logic: V Programming: |

- Example English statement
 - Pick either heads or tails
 - I will watch the movie on Monday or Tuesday

• Symbols:

Logic: ⊻ Programming: ^

- Example English statement
 - Pick either heads or tails
 - I will watch the movie on Monday or Tuesday

• Symbols:

Logic: ⊻ Programming: ^

- Example English statement
 - Pick either heads or tails
 - I will watch the movie on Monday or Tuesday

• Symbols:

Logic: ⊻ Programming: ^

- Example English statement
 - Pick either heads or tails
 - I will watch the movie on Monday or Tuesday

Truth Table for XOR						
a	a ∨ b					
0	0					
0	1					
1	0					
1	1					

• Symbols:

Logic: <u>V</u> Programming: ^

- **Example English statement** •
 - Pick either heads or tails
 - I will watch the movie on Monday or Tuesday

I ruth Table for XOR						
a	b	a ∨ b				
0	0	0				
0	1	1				
1	0	1				
1	1	0				

Symbols:

Programming: ^ Set notation: none Logic: ⊻

Inverted Logic Gates

Truth Table for AND and NAND ¬(a ∧ b) a ∧ b b a 0 \mathbf{O} 0 1 1 0

1

1

Inverted Logic Gates

Truth Table for AND and NANDab $a \land b$ $\neg(a \land b)$ 00010101

0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Implication and Equivalence

Truth Table for IMPLY

а	b	$A \Rightarrow b$
0	0	1
0	1	1
1	0	0
1	1	1

Truth Table for EQUIV

a	b	A ⇔ b
0	0	1
0	1	0
1	0	0
1	1	1

Implication and Equivalence

Truth Table for IMPLY

а	b	$A \Rightarrow b$
0	0	1
0	1	1
1	0	0
1	1	1

Truth Table for EQUIV

Implication and Equivalence

Truth Table for IMPLY

а	b	$A \Rightarrow b$
0	0	1
0	1	1
1	0	0
1	1	1

Truth Table for EQUIV

Properties of Elementary Algebra

Associative Property

$$(a+b) + c = a + (b+c)$$
$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

Commutative Property

$$a+b = b+a$$
 $a\cdot b = b\cdot a$

Distributive Property

 $a(b+c) = (a \cdot b) + (a \cdot c)$

Associative Property $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

•

Associative Property $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

 $(A \wedge B) \wedge C = A \wedge (B \wedge C)$

(a+b) + c = a + (b+c)**Associative Property**

Associative Property (a+b) + c = a + (b+c)

 $(A \lor B) \lor C = A \lor (B \lor C)$

 $A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$

Distributive Rule $a(b+c) = (a \cdot b) + (a \cdot c)$							
Α	В	С	B∨C	A∧(B∨C)	A∧B	AAC	(A∧B)∨(A∧C)
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

 $A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$

Α	В	¬Α	¬Β	¬А∧¬В	¬(¬A∧¬B)	A∨B

 $\neg(\neg A \land \neg B) = A \lor B$

 $\neg(\neg A \land \neg B) = A \lor B$ $\overline{\overline{A} \wedge \overline{B}} = A \vee B$

Α	В	¬Α	¬₿	¬А∨¬В	¬(¬A∨¬B)	A∧B

-00

 $\neg(\neg A \lor \neg B) = A \land B$ $\overline{\overline{A}} \vee \overline{\overline{B}} = A \wedge B$

• It also works with sets

 $A' \cap B'$

 $(A' \cap B')'$

Symbols

	The second s				Java, C	
	Operation	Sets	Logic	Alternate	Bitwise	Logical
negation	NOT	-	L		~	
conjunction	AND	\cap	\wedge		&	&&
inclusive disjunction	OR	U	V	+		
exclusive disjunction	XOR		⊻	Ð	~	

Introduction to Computer Science

Boolean Logic

Introduction